|   Electron Microscopy Solutions

      
Electron Microscopy Solutions
      

Image Gallery

1003 images found   |   View all
Back  | 1 2 3 4 5 6 7 8 9 10  ...  | Next 

Product

SEM

TEM

DualBeam

FIB

FEBID-Tower

Free-standing platinum-carbon FEBID-structure with central pillar

Courtesy of Mr. Robert Winkler , Graz, centre for electron microscopy

Taken by DualBeam microscope

Sample: FEBID
Detector: TLD
Voltage: 5 kV
Horizontal Field Width: 3.00µm
Working Distance: 5.0 mm

Trilobite

A BSE image of a small trilobite, taken for some palaeontology students.

Courtesy of Mr. Dylan Goudie , Memorial University of Newfoundland

Taken by MLA microscope

Magnification: 133x
Sample: small trilobyte
Detector: BSE
Voltage: 25 kV
Vacuum: 0.6 Torr
Horizontal Field Width: 2.25mm
Working Distance: 13.7
Spot: 5.86

Silver Tip

A nano silver tip on nano copper crystal.

Courtesy of wadah mahmoud

Taken by Inspect microscope

Magnification: 400,000
Sample: copper thin wire
Detector: SE
Voltage: 6 kV
Vacuum: HV
Working Distance: 7.0
Spot: 3.2

Golden nanoblob

Gold nanoparticles on a SiN substrate molten together under the influence of the electronbeam, forming one 'large' blob of gold.

Courtesy of Mr. Marien Bremmer , Leiden Institute of Physics

Taken by Tecnai microscope

Magnification: 420,000
Sample: Au / SiN
Voltage: 200
Spot: 3.0

Multiple bacteria

Almost all bacteria are so tiny they can only be seen through a microscope. Bacteria are made up of one cell, so they are a kind of unicellular organism

Courtesy of Mr. sathish - , Christian medical collage.vellore (CMC)

Taken by Tecnai microscope

Magnification: 6000 x
Sample: Cell culture
Detector: SE
Voltage: 60 kv
Vacuum: 5 mbar
Horizontal Field Width: 6.00 μm
Working Distance: 5.8
Spot: 1.0

Egg Green Lacewings (Chrysopidae)

A: 5 stitch photos of Egg Green lacewings. B, C, D: details.

Courtesy of Riccardo Antonelli

Taken by Quanta SEM microscope

Magnification: 130x, 200x, 700x, 500x
Sample: Egg Green lacewings (Chrysopidae)
Detector: LFD, Low vacuum
Voltage: 10.00 kV
Vacuum: 0.975 Torr
Horizontal Field Width: 1.15mm, 746μm, 213μm, 298μm
Working Distance: 12.8 to 7.1 mm, 5.8 mm, 5.8 mm, 13,2 mm
Spot: 5, 5, 4, 4

Microtunnels

Biochar is a highly porous carbon-rich material produced by pyrolysis of biomass. The SEM image shows micropores in a wood-derived biochar sample. Due to its unique properties such as high porosity, large surface area, and presence of negatively charged organic functional groups, biochar is used as adsorbent for the removal of various contaminants in soil and wastewater. Biochar is a simple yet powerful tool for soil and waste management, energy production, and C-sequestration to mitigate climate change.

Courtesy of Dr. Ravi Sidhu , University of Manitoba

Taken by Quanta SEM microscope

Magnification: 4000x
Sample: Biochar
Detector: LFD
Voltage: 10kV
Vacuum: 100 Pa
Horizontal Field Width: 5
Working Distance: 9.3
Spot: 3.0

Golden Joystick

Fused gold wire during an electrical stress

Courtesy of Marie Castignolles

Taken by Nova NanoSEM microscope

Sample: Silicon Die
Detector: SE
Voltage: 2kV
Horizontal Field Width: 150µm
Spot: 3

Polyimide Removal on a Package

Polyimide Removal on a Package

Courtesy of FEI

Taken by Vion Plasma microscope

Sample: silicon
Horizontal Field Width: 623 μm
Working Distance: 16.5 mm

Crystal Balls

Calcium sulphate crystals on filter paper. Material provided by Nalco Champion recovered from a produced water sampled from a North Sea production well under seawater flooding.

Courtesy of Dr. Jim Buckman , Heriot-Watt University

Taken by Quanta SEM microscope

Magnification: 1500
Sample: Calcium sulphate
Detector: BSED (Quad detector)
Voltage: 20 kV
Vacuum: 0.45 Torr
Horizontal Field Width: 138 microns
Working Distance: 10.7
Spot: 4.0

Metal particles in Ceramics Sample

Metal particles in Ceramics Sample - Product: Scios DualBeam

Taken by Scios microscope

Water droplets

Water droplets on shell of brachiopod

Courtesy of Dr. Jim Buckman , Heriot-Watt University

Taken by SEM microscope

Detector: GSE
Vacuum: ESEM

Bacteria

Bacteria

Courtesy of Mr. MUHAMMET AYDIN , Namık kemal university

Taken by Quanta SEM microscope

Magnification: 5000
Detector: LFD
Voltage: 2
Working Distance: 8,6
Spot: 4

Mesangial cell

-

Courtesy of Mr. sathish - , Christian medical collage.vellore (CMC)

Taken by Tecnai microscope

Magnification: 4200 x
Sample: Tissue
Detector: ccd
Voltage: 120 kv
Vacuum: 5 mbar
Horizontal Field Width: 3.42 μm
Working Distance: 4.0
Spot: 1.0

Silver Coated Glass

Silver Coated Glass

Taken by Helios NanoLab G3 microscope

ZnO microparticles.

ZnO microparticles obtained by hydrothermal synthesis using microwave heating.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 33,000x
Sample: Zinc oxide.
Detector: MIX: SE plus BSE
Voltage: 30 kV
Horizontal Field Width: 9.04 μm
Working Distance: 9.8
Spot: 1.5

Stainless steel II

Stainless steel microstructure.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 10,000x
Sample: Stainless steel.
Voltage: 20 kV
Vacuum: 2.3 e-4 Pa
Horizontal Field Width: 29.8 µm
Working Distance: 9.7
Spot: 4.5

ZnO Nanowire Haystack

A haystack of ZnO Nanowires on Si substrate.

Courtesy of Peter Heß

Taken by Nova NanoSEM microscope

Magnification: 2500x
Sample: ZnO
Detector: ETD
Voltage: 5 kV
Vacuum: 0.00000536681 mbar
Horizontal Field Width: 120 μm
Working Distance: 5.1 mm
Spot: 2 nA

Opposing Fronts

Image of a felt marker tip; courtesy of student Maria Mendoza.

Courtesy of Alyssa Calabro

Taken by Quanta 3D microscope

wings made of colors

charging around a tungsten wire

Courtesy of Martina Dienstleder

Taken by DualBeam microscope

Sample: tungsten wire
Detector: ETD - SE
Voltage: 5kV
Horizontal Field Width: 1.12mm
Working Distance: 5.0mm

Bouquet

The image is of gold coated fluorapatite grown on a protein coated PDMS substrate. This comes from a project which studies the enamel mineral formation. Enamel has a complex hierarchical structure which we would like to recreate.

Courtesy of Ms. Kseniya Shuturminska , Queen Mary University of London

Taken by Inspect microscope

Sample: Fluorapaptite on PDMS
Detector: SE
Voltage: 5 kV
Working Distance: 10
Spot: 2.5

Tanacetum Vulgare

Tansy (Tanacetum vulgare) is a perennial, herbaceous flowering plant of the aster family, native to temperate Europe and Asia. This image was taken on a Magellan XHR Scanning Electron Microscope (SEM)

Courtesy of FEI Image

Taken by Magellan XHR SEM microscope

Magnification: 10,000x
Voltage: 3.00 kV
Horizontal Field Width: 29.8 μm
Working Distance: 4.0 mm

Honey comb

diatom

Courtesy of Mrs. Zehra Sinem YILMAZ , İzmir Institute of Technology Center for Materials Research

Taken by Quanta SEM microscope

Magnification: 12,500x
Sample: diatom
Detector: SE
Voltage: 5 kV
Vacuum: 3.06e-4 Pa
Horizontal Field Width: 33.2 μm
Working Distance: 8.9
Spot: 3.0

Expanded Vermiculite

Flakes of raw vermiculite concentrate are micaceous in appearance and contain interlayer water in their structure. When the flakes are heated rapidly at a temperature above 870° C, the water flashes into steam, and the flakes expand into accordion like particles. This process is called exfoliation, or expansion, and the resulting lightweight material is chemically inert, fire resistant, and odorless. In lightweight plaster and concrete, vermiculite provides good thermal insulation. Vermiculite can absorb such liquids as fertilizers, herbicides, and insecticides, which can then be transported as free-flowing solids.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 172x
Detector: MIX: SE plus BSE
Voltage: 25 kV
Vacuum: 120 Pa
Horizontal Field Width: 1730 µm
Working Distance: 20.6
Spot: 3.0

Dendritic Gold

Dendrite on Prickly Gold Sample

Courtesy of Ashley Anderson

Taken by Inspect microscope

Magnification: 8,000x
Sample: Prickly Gold
Detector: SE
Voltage: 30kv
Horizontal Field Width: 15.9um
Working Distance: 10.0 mm
Spot: 3.0 nA